Candidate Name	Cent	re Nu	mber	•	Candidate Number				
					0				

GCSE

SCIENCE (Double Award)

UNIT 5: (Double Award) CHEMISTRY 2 FOUNDATION TIER

SAMPLE ASSESSMENT MATERIALS

(1 hour 15 minutes)

For Ex	For Examiner's use only					
Question	Maximum Mark	Mark Awarded				
1.	7					
2.	7					
3.	7					
4.	8					
5.	5					
6.	5					
7.	6					
8.	8					
9.	7					
Total	60					

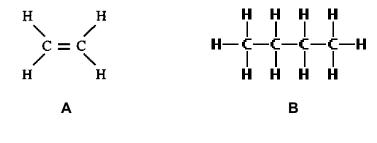
ADDITIONAL MATERIALS

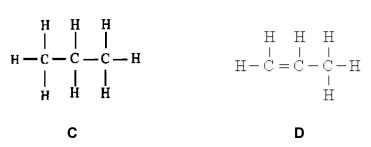
In addition to this paper you will require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page Answer all questions.

Write your answers in the spaces provided in this booklet.


INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question. Question **7** is a quality of extended response (QER) question where your writing skills will be assessed.

[1]

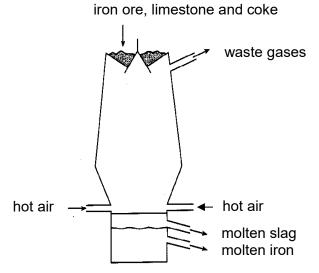
Answer all questions.

1. (a) The diagrams below show the structural formulae of some hydrocarbons.

(i)	Give the letters of the two hydrocarbons which are alkenes. Give t reason for your choice.	he [2]
	and	
	Reason	
(ii)	Give the letter of the hydrocarbon which is represented by the molecular formula $\mbox{C}_3\mbox{H}_6.$	[1]
(iii)	Give the name of hydrocarbon B .	[1]

An alkane contains two carbon atoms and six hydrogen atoms. Draw its

(b)


structural formula.

(c) The table below shows some information about monomers and the polymers that can be made from them.

Complete the table. [2]

Name of monomer	Structural formula of monomer	Name of polymer	Repeating unit for the polymer
tetrafluoroethene	c=c	polytetrafluoroethene PTFE	
vinylchloride (chloroethene)		polyvinylchloride PVC	HH

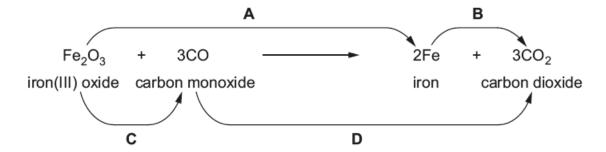
2. Iron is extracted from iron ore in a blast furnace.

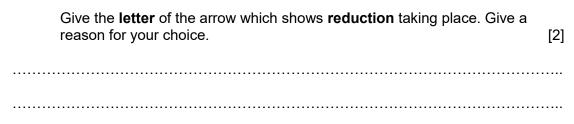
(a) Draw a line to link the raw material to its use in the blast furnace. [2]

Raw material Use

iron ore source of iron

limestone acts as a fuel

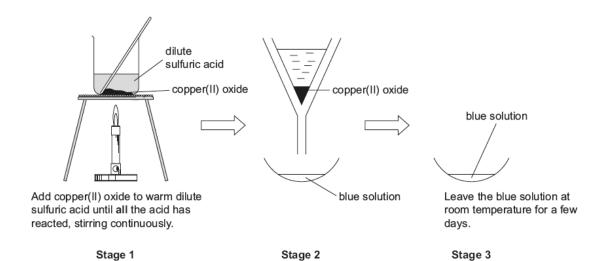

coke removes impurities


(b) Coke contains the element carbon. Carbon reacts with oxygen in the air forming carbon dioxide.

Write a **symbol** equation for this reaction.

[1]

(c) The equation below shows the formation of iron in the blast furnace.



(d) The maximum mass of iron that can be obtained from 1 tonne of iron oxide is 0.7 tonnes. In the actual reaction, only 0.65 tonnes of iron is made. Calculate the percentage yield of iron in the reaction. [2]

Percentage yield = %

7

3. The diagrams below show the three stages a pupil follows to make copper(II) sulfate crystals.

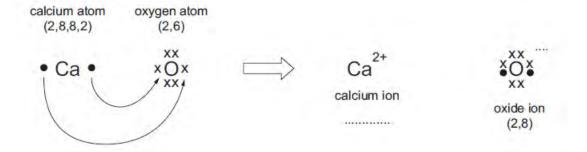
(a)	State what the pupil will see when all the acid has reacted in stage 1.	[1]
(b)	Name the process in stage 2. Give the reason why it is necessary.	[2]
(c)	Complete the symbol equation for this reaction.	[2]
	CuO + H ₂ SO ₄ → +	

Chemical formula

If hydrochloric acid were used instead of sulfuric acid, give the name and

chemical formula for the salt formed.

7


[2]

(d)

(a)	State	one adv	vantage o	of recyc	ling p	lastic b	ottles	S.		
(b)			vs how th and 201		entag	e of co	mmor	n mat	erials re	ecycled char
	70									
	60								П	☐ paper
										glass
	50									metal
										plastic
ercentage	40									
recycled	30									
	30				T					
	20									
			П							
	10									
	0 +	1960	1970	1980		1990	20	00	2010	=4
				(Year Graph	1				
	(i)	recycle	ed betwe	en 1980	o and	2010.	List t	the m	aterials	each materia in order from nallest increa
			est increa							

	60					/		
	50							
Number of	40			Bottles so	id ,			
plastic bottles (billions)	30							
	20							
	10		Bottle	es recycle	ed			
	1996	1998	2000	2002	2004	200	16	
	1996	1990	Year		2004	200	ю	
(i)		1996 and 20 . Using the		mber of				

5. (a) The diagram shows the electronic changes that occur when calcium reacts with oxygen to form calcium oxide. The • and x symbols represent outer shell electrons.

- (i) Complete the diagram by adding the charge on the oxide ion **and** the electronic structure of the calcium ion. [1]
- (ii) Write the chemical formula of calcium oxide. [1]
- (b) Calcium oxide has a giant ionic structure. It has a high melting point, is soluble in water and conducts electricity when molten.

Select the substance from the following table that is most likely to have a giant covalent structure. Explain your choice. [2]

Substance	Melting point (°C)	Solubility in water	Conductivity when molten
W	– 70	soluble	poor
X	650	insoluble	good
Υ	1050	soluble	good
Z	1600	insoluble	poor

(c) Methane contains carbon and hydrogen atoms.

Element	Electronic structure
carbon	2,4
hydrogen	1

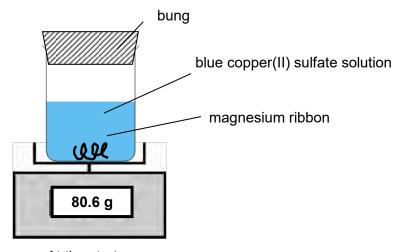
Put a tick (\checkmark) in the box which represents the bonding in a methane molecule. [1]

H.	Н		С
•x 4-	•X		•X
H [⁺] Å C Å H [⁺]	н 🕯 С 🕯 н	Схнхнхнхн	Сх́нх́с
•X	•X		•X
H [⁺]	Н		С

5

6. When hydrogen, H₂, burns in air, water is formed.

The bond energies relevant to the reaction are shown in the table.

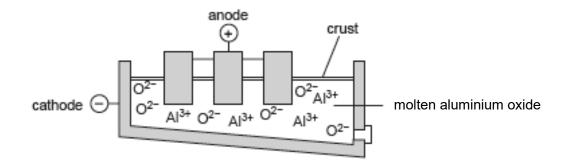

Bond	Bond energy (kJ)
Н—Н	436
O=O	498
О—Н	464

(a)	(i)	Calculate the energy needed to break all the bonds in the reactants .
		[2]

(ii) Calculate the energy released when **all** the bonds in the **product** are formed. [2]

(b) Use your answers from part (a) to calculate the overall energy change. [1]

7. A student investigated what happened when a piece of magnesium ribbon was added to copper(II) sulfate solution. The diagram below shows the apparatus she set up. She left the apparatus for 1 hour.



At the start

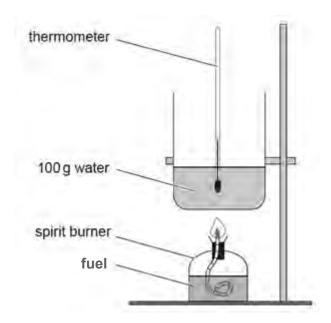
Describe all the observations the student would make when she returned after

Explain these observations.	[6 QER]

8. (a) Aluminium is obtained by the electrolysis of molten aluminium oxide.

(i)	The electrode equation for	· the forma	tion of aluminiu	um is as shown
()	below.			

	State at which electrode aluminium is formed. Give a reason for your answer.	[2]
	Write a balanced symbol equation for the overall reaction taking pla	
iii)	Explain how the extraction of aluminium may contribute to global warming.	[2]
Alumir	nium is a good electrical conductor and is therefore used to make ead power cables.	


Give a different property of aluminium and one use which relies on this

[1]

(b)

property.

9. Methanol, ethanol, propanol and butanol can be used as fuels. An experiment was carried out to find out which alcohol gives out the most energy when burned. The diagram below shows the apparatus used.

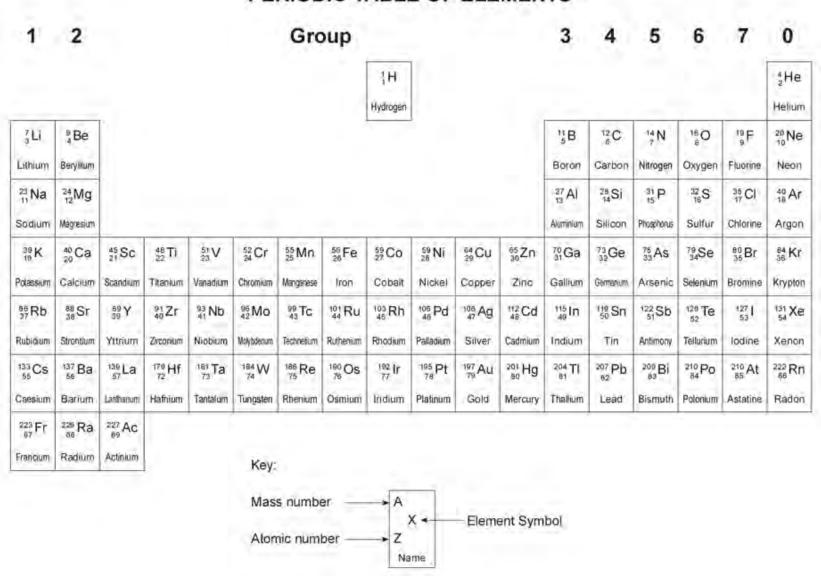
1 g of each fuel was used to heat 100 g of water. The results are shown below.

Fuel	Initial temperature of water (°C)	Final temperature of water (°C)	Temperature change (°C)	Energy given out (J/g)
methanol	18	31	13	5460
ethanol	20	45	25	10 500
propanol	19	48	29	12 180
butanol	20	50	30	

(a) The energy given out by each fuel can be calculated using the formula: energy given out = mass of water \times 4.2 \times temperature change Use this formula to calculate the energy given out per gram of butanol burned. [2]

Energy given out =		J/ç	j
--------------------	--	-----	---

1				
1				
2				
	eoretical value ole below.	es for the energy given out by each alcohol are	given	
	Fuel	Theoretical energy given out values (J/g)		
	methanol	22 700		
	ethanol	29 700		
	propanol	33 600		
	propunor	33 000		
	butanol	36 100		
(i)	butanol Give one sin theoretical value Similarity	36 100 nilarity and one difference between the experim		


END OF PAPER

FORMULAE FOR SOME COMMON IONS

POSITIV	POSITIVE IONS		/E IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br⁻
Ammonium	NH_4^+	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI ⁻
Calcium	Ca ²⁺	Fluoride	F ⁻
Copper(II)	Cu ²⁺	Hydroxide	OH-
Hydrogen	H⁺	lodide	I ⁻
Iron(II)	Fe ²⁺	Nitrate	NO ₃
Iron(III)	Fe ³⁺	Oxide	O ²⁻
Lithium	Li⁺	Sulfate	SO ₄ ²⁻
Magnesium	Mg ²⁺		·
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag [⁺]		
Sodium	Na [†]		
Zinc	Zn ²⁺		

Avogadro's number, $L = 6 \times 10^{23}$

PERIODIC TABLE OF ELEMENTS

D	<i>11</i>
\boldsymbol{r}	IVI I